Data-Independent Acquisition and Quantification of Extracellular Matrix from Human Lung in Chronic Inflammation-Associated Carcinomas

Author:

Bons Joanna,Pan Deng,Shah Samah,Bai Rosemary,Chen-Tanyolac Chira,Wang Xianhong,Fels Elliott Daffolyn R.,Urisman Anatoly,O’Broin Amy,Basisty Nathan,Rose Jacob,Sangwan Veena,Camilleri-Broët Sophie,Tankel James,Gascard Philippe,Ferri Lorenzo,Tlsty Thea D.ORCID,Schilling BirgitORCID

Abstract

AbstractEarly events associated with chronic inflammation and cancer involve significant remodeling of the extracellular matrix (ECM), which greatly affects its composition and functional properties. Using lung squamous cell carcinoma (LSCC), a chronic inflammation-associated cancer (CIAC), we optimized a robust proteomic pipeline to discover potential biomarker signatures and protein changes specifically in the stroma. We combined ECM enrichment from fresh human tissues, data-independent acquisition strategies, and stringent statistical processing to analyze ‘Tumor’ and matched adjacent histologically normal (‘Matched Normal’) tissues from patients with LSCC. Overall, 1,802 protein groups were quantified with at least two unique peptides, and 56% of those proteins were annotated as ‘extracellular’. Confirming dramatic ECM remodeling during CIAC progression, 529 proteins were significantly altered in the ‘Tumor’ compared to ‘Matched Normal’ tissues. The signature was typified by a coordinated loss of basement membrane proteins and small leucine-rich proteins. The dramatic increase in the stromal levels of SERPINH1/heat shock protein 47, that was discovered using our ECM proteomic pipeline, was validated by immunohistochemistry (IHC) of ‘Tumor’ and ‘Matched Normal’ tissues, obtained from an independent cohort of LSCC patients. This integrated workflow provided novel insights into ECM remodeling during CIAC progression, and identified potential biomarker signatures and future therapeutic targets.Statement of significance of the studyThe extracellular matrix (ECM) is a complex scaffolding network composed of glycoproteins, proteoglycans and collagens, which binds soluble factors and, most importantly, significantly impacts cell fate and function. Alterations of ECM homeostasis create a microenvironment promoting tumor formation and progression, therefore deciphering molecular details of aberrant ECM remodeling is essential. Here, we present a multi-laboratory and refined proteomic workflow, featuring i) the prospective collection of tumor and matched histologically normal tissues from patients with lung squamous cell carcinoma, ii) the enrichment for ECM proteins, and iii) subsequent label-free data-independent acquisition (DIA)-based quantification. DIA is a powerful strategy to comprehensively profile and quantify all detectable precursor ions contained in the biological samples, with high quantification accuracy and reproducibility. When combined with very stringent statistical cutoffs, this unbiased strategy succeeded in capturing robust and highly confident proteins changes associated with cancer, despite biological variability between individuals. This label-free quantification workflow provided the flexibility required for ongoing prospective studies. Discussions with clinicians, surgeons, pathologists, and cancer biologists represent an opportunity to interrogate the DIA digitalized maps of the samples for newly formulated questions and hypotheses, thus gaining insights into the continuum of the disease and opening the path to novel ECM-targeted therapies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3