Abstract
AbstractComplex 3D bioengineered tumour models provide the opportunity to better capture the heterogeneity of patient tumours. Patient-derived organoids are emerging as a useful tool to study tumour heterogeneity and variation in patient responses. Organoid cultures typically require a 3D microenvironment that can be manufactured easily to facilitate screening. Here we set out to create a high-throughput, “off-the-shelf” platform which permits the generation of organoid-containing microtissues for standard phenotypic bioassays and image-based readings. To achieve this, we developed the Scaffold-supported Platform for Organoid-based Tissues (SPOT) platform. SPOT is a 3D gel-embedded in vitro platform that can be produced in a 96- or 384-well plate format and enables the generation of flat, thin and dimensionally-defined microgels. SPOT has high potential for adoption due to its reproducible manufacturing methodology, compatibility with existing instrumentation, and reduced within-sample and between-sample variation, which can pose challenges to both data analysis and interpretation. Using SPOT we generate cultures from patient derived pancreatic ductal adenocarcinoma organoids and assess the cellular response to standard-of-care chemotherapeutic compounds, demonstrating our platform’s usability for drug screening. We envision 96/384-SPOT will provide a useful tool to assess drug sensitivity of patient-derived organoids and easily integrate into the drug discovery pipeline.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献