A highly polymorphic effector protein promotes fungal virulence through suppression of plant-associated Actinobacteria

Author:

Snelders Nick C.ORCID,Boshoven Jordi C.,Song Yin,Schmitz Natalie,Fiorin Gabriel L.,Rovenich Hanna,van den Berg Grardy C.M.,Torres David E.,Faino Luigi,Seidl Michael F.,Thomma Bart P.H.J.ORCID

Abstract

ABSTRACTPlant pathogens secrete effector proteins to support host colonization through a wide range of molecular mechanisms, while plant immune systems evolved receptors to recognize effectors or their activities to mount immune responses to halt pathogens. Importantly, plants do not act as single organisms, but rather as holobionts that actively shape their microbiota as a determinant of health, and may thus be targeted by pathogen effectors as such. The soil-borne fungal pathogen Verticillium dahliae was recently demonstrated to exploit the VdAve1 effector to manipulate the host microbiota to promote vascular wilt disease in absence of the corresponding immune receptor Ve1. We now identified a multiallelic V. dahliae gene displaying ~65% sequence similarity to VdAve1, named VdAve1-like (VdAve1L). Interestingly, VdAve1L shows extreme sequence variation, including alleles that encode dysfunctional proteins, indicative of selection pressure to overcome host recognition. We show that the orphan cell surface receptor Ve2, encoded at the Ve1 locus, does not recognize VdAve1L. Furthermore, we show that the full-length variant VdAve1L2 possesses antimicrobial activity, like VdAve1, yet with a divergent activity spectrum. Altogether, VdAve1L2 is exploited by V. dahliae to mediate tomato colonization through the direct suppression of antagonistic Actinobacteria in the host microbiota. Our findings open up strategies for more targeted biocontrol against microbial plant pathogens.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3