The western redcedar genome reveals low genetic diversity in a self-compatible conifer

Author:

Shalev Tal J.ORCID,Gamal El-Dien OmniaORCID,Yuen Macaire M.S.ORCID,Shengqiang Shu,Jackman Shaun D.ORCID,Warren René L.ORCID,Coombe LaurenORCID,van der Merwe Lise,Stewart Ada,Boston Lori B.ORCID,Plott ChristopherORCID,Jenkins JerryORCID,He GuifenORCID,Yan JuyingORCID,Yan Mi,Guo Jie,Breinholt Jesse W.ORCID,Neves Leandro G.ORCID,Grimwood JaneORCID,Rieseberg Loren H.ORCID,Schmutz JeremyORCID,Birol InancORCID,Kirst MatiasORCID,Yanchuk Alvin D.,Ritland CarolORCID,Russell John H.,Bohlmann JoergORCID

Abstract

AbstractWe assembled the 9.8 Gbp genome of western redcedar (WRC, Thuja plicata), an ecologically and economically important conifer species of the Cupressaceae. The genome assembly, derived from a uniquely inbred tree produced through five generations of self-fertilization (selfing), was determined to be 86% complete by BUSCO analysis – one of the most complete genome assemblies for a conifer. Population genomic analysis revealed WRC to be one of the most genetically depauperate wild plant species, with an effective population size of approximately 300 and no significant genetic differentiation across its geographic range. Nucleotide diversity, π, is low for a continuous tree species, with many loci exhibiting zero diversity, and the ratio of π at zero-to four-fold degenerate sites is relatively high (∼ 0.33), suggestive of weak purifying selection. Using an array of genetic lines derived from up to five generations of selfing, we explored the relationship between genetic diversity and mating system. While overall heterozygosity was found to decline faster than expected during selfing, heterozygosity persisted at many loci, and nearly 100 loci were found to deviate from expectations of genetic drift, suggestive of associative overdominance. Non-reference alleles at such loci often harbor deleterious mutations and are rare in natural populations, implying that balanced polymorphisms are maintained by linkage to dominant beneficial alleles. This may account for how WRC remains responsive to natural and artificial selection, despite low genetic diversity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3