Yeast and Mammalian Epsins Use Different Determinants for Localization and Function: Role of Clathrin/AP2/Ubiquitin Binding Motifs and Poly-Glutamine Stretches

Author:

Madhivanan Kayalvizhi,Subramanian Sneha,Cao Lingyan,Mukherjee Debarati,Sen Arpita,Hsieh Wen-Chieh,Hanna Claudia B.,Wang Beibei,Chen Hong,Staiger Chris J.,Aguilar R. Claudio

Abstract

ABSTRACTEpsins are endocytic adaptor proteins involved in the internalization of important membrane proteins such as EGFR and Notch ligands. Therefore, this protein family impacts critical signaling pathways and processes such as cell migration and cytokinesis and is ultimately required for embryo development in mammals and cell viability in yeast. Intriguingly, although Epsins are conserved and display similar binding determinants, the process of endocytosis in yeast and mammals exhibit some dramatic mechanistic differences. Therefore, we wondered if the function of Epsins in these organisms are similar and are similarly regulated or they also differ. Since proper and timely localization is needed for function, we determined what elements target Epsins to endocytic sites in yeast vs mammals. Specifically, using a systematic/combinatorial mutagenesis approach we produced a collection of yeast and human Epsin mutated variants that was tested for localization at endocytic sites and for function.Our results showed that the intrinsically disordered carboxy-terminus holds the major determinants (involved in binding of ubiquitin, AP2, clathrin and EH domain-containing proteins) for proper intracellular localization of different Epsin paralogs and homologs in yeast and mammals, while also having a major impact on function. Importantly, we established hierarchies of carboxy-terminal binding determinants for sustaining Epsin localization which turned to be different for human vs. yeast cells; favoring clathrin and AP2 binding in the former and recognition of cargo and EH domain-containing proteins for the latter. Further, we found evidence in both systems that yeast Epsins also use for localization regions of the protein that were until now of unknown functional relevance, i.e., glutamine-rich sequences. Interestingly, some molecular determinants within the Epsin molecule seem to have functional importance beyond its contribution to localization to endocytic sites. Based on these findings, we propose working models for Epsin function and recruitment to membranes/endocytic sites at different maturation stages.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3