The RecA-directed recombination pathway of natural transformation initiates at chromosomal replication forks in Streptococcus pneumoniae

Author:

Johnston CalumORCID,Hope Rachel,Soulet Anne-Lise,Dewailly Marie,De Lemos David,Polard PatriceORCID

Abstract

AbstractHomologous recombination (HR) is a crucial mechanism of DNA strand exchange that promotes genetic repair and diversity in all kingdoms of life. Bacterial HR is driven by the universal recombinase RecA, assisted by dedicated mediators that promote its polymerization on single-stranded DNA (ssDNA). In bacteria, natural transformation is a prominent HR-driven mechanism of horizontal gene transfer specifically dependent on the conserved DprA recombination mediator. Transformation involves internalisation of exogenous DNA as ssDNA, followed by its integration into the chromosome by RecA-directed HR. How DprA-mediated RecA filamentation on transforming ssDNA is spatiotemporally coordinated with other cellular processes remains unknown. Here, we tracked the localisation of functional fluorescent fusions to DprA and RecA in Streptococcus pneumoniae and revealed that both accumulate in an interdependent manner with internalised ssDNA at replication forks. In addition, dynamic RecA filaments were observed emanating from replication forks, even with heterologous transforming DNA, which probably represent chromosomal homology search. In conclusion, this unveiled interaction between HR transformation and replication machineries highlights an unprecedented role for replisomes in anchoring transforming ssDNA to the chromosome, which would define a pivotal early HR step for its chromosomal integration.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3