Dynamics and length distributions of microtubules with a multistep catastrophe mechanism

Author:

Schwietert Felix,Heydenreich Lina,Kierfeld JanORCID

Abstract

AbstractRegarding the experimental observation that microtubule catastrophe can be described as a multistep process, we extend the Dogterom–Leibler model for dynamic instability in order to discuss the effect that such a multistep catastrophe mechanism has on the distribution of microtubule lengths in the two regimes of bounded and unbounded growth. We show that in the former case, the steady state length distribution is non-exponential and has a lighter tail if multiple steps are required to undergo a catastrophe. If rescue events are possible, we detect a maximum in the distribution, i.e., the microtubule has a most probable length greater than zero. In the regime of unbounded growth, the length distribution converges to a Gaussian distribution whose variance decreases with the number of catastrophe steps. We extend our work by applying the multistep catastrophe model to microtubules that grow against an opposing force and to microtubules that are confined between two rigid walls. We determine critical forces below which the microtubule is in the bounded regime, and show that the multistep characteristics of the length distribution are largely lost if the growth of a microtubule in the unbounded regime is restricted by a rigid wall. All results are verified by stochastic simulations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3