Multivariable Graphical User Interface for Simulation of Tethered Particle Motion

Author:

Ramdin Khovesh A.ORCID,Hackl MarkusORCID,Chundawat Shishir P. S.ORCID

Abstract

AbstractThe analysis of particles bound to a surface by flexible tethers can facilitate understanding of various biophysical phenomena (e.g., molecular dynamics of DNA-protein or protein-ligand binding interactions, DNA extensibility and polymer biophysics). Being able to model such systems theoretically can aid in understanding experimentally observed motions and furthermore the limitations of such models can provide insight into modeling complex systems that basic theory sometimes cannot account for. The simulation of tethered particle motion (TPM) allows for efficient analysis of complex behaviors exhibited by such systems, however this type of experiment is rarely taught in undergraduate science classes. We have developed a MATLAB simulation package intended to be used in academic contexts to concisely model and graphically represent the behavior of different tether-particle systems. We show how analysis of the simulation results can be used in biophysical research employing single molecule force spectroscopy (SMFS). Here, our simulation package is capable of modeling any given particle-tether-substrate system and allows the user to generate a parameter space with static and dynamic model components. Our simulation was successfully able to recreate generally observed experimental trends using a recently developed SMFS technique called Acoustic Force Spectroscopy (AFS). Further, the simulation was validated through consideration of the conservation of energy of the tether-bead system, trend analyses, and comparison of particle positional data from actual TPM in silico experiments conducted to simulate data with a parameter space similar to the AFS experimental setup. Overall, our TPM simulator and graphical user interface is suitable for use in an academic context and serves as a template for researchers to set up TPM simulations to mimic their specific SMFS experimental setup.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3