Microchip-based electrokinetic biosensor: microfabrication and application in membrane protein profiling of extracellular vesicles

Author:

Gevari Moein TalebianORCID,Sahu Siddharth SourabhORCID,Mitra Dhrubaditya,Hååg Petra,Viktorsson Kristina,Zhang Shili,Linnros Jan,Dev Apurba

Abstract

AbstractIn this study, we demonstrate the fabrication, characterization, and application of a microchip-based electrokinetic biosensor which exploits streaming current for signal transduction. The sensor chips, fabricated using standard silicon fabrication techniques, are based on Si-glass microfluidics offering precision, robustness, and transparency. A custom-built chip-manifold allowing easy interfacing with standard microfluidic connections is also developed which shows leak-free integration of the microchips up to 6 bar of applied pressure. Within this range of pressure, the devices show linear and highly reproducible values for flow rates and streaming current with RMS noise below 20 pA. The microchips designed for multiplexed measurements were tested with the detection of free proteins (streptavidin) and also transmembrane proteins of small extracellular vesicles (sEVs) to demonstrate the capacity of the microchips to detect various types of bio-analytes. The limit of detection (LOD) for streptavidin was estimated to be 0.5 nM while for the transmembrane protein (CD9), the LOD was found to be 1.2×106 sEVs/mL. The sensitivity (LOD) of the devices was found to be about 4 times better in targeting CD9 transmembrane protein of H1975 extracellular vesicles when compared to commercial silica capillary which was used previously. The improvement in LOD is attributed to the higher surface quality of the sensor in terms of the density of surface charges which may be further exploited for even lower LOD. In addition, optical detection of fluorophore-tagged standard proteins was done through the optical window of the chip manifold and the transparent glass cap of the microchip.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3