Modeling neural activity in neurodegenerative diseases through a neural field model with variable density of neurons

Author:

Reyes Ronaldo GarcíaORCID,Martinez Montes Eduardo

Abstract

AbstractIn recent years, a vertiginous advance has occurred within the Neural Field Theory with the development of the so-called Next Generation Neural Field models. Unlike the phenomenological models, these models manage to describe neuronal activity, macroscopically, from the thermodynamic limit of microscopic laws under the assumption of a homogeneous density of neurons. The study of neural activity during neurodegenerative processes associated to Alzheimer’s, Parkinson’s or Glioblastomas, should include a variable density of neurons. In this work, we propose an update of the Next Generation Neural Field model, extracted from the thermodynamic limit of the quadratic integration-and-fire model with realistic synaptic coupling and a variable density of neurons at the microscopic level. The thermodynamic limit of the system will allow us to study the patterns of synchronized neural activity that appear as the result of different spatial distribution of neurodegeneration. In particular, we demonstrate that during neurodegenerative processes, the relationship established between the thermodynamic states of the Neural Field and the Kuramoto order parameter (Measure of Neural Synchronization) differs from the classic results of the Next Generation Neural Field literature. Instead, the variation in neuron density directly modifies the Kuramoto order parameter. This might help us explain the diverse patterns of activity that can be found in different neurodegenerative processes and that could become experimental biomarkers of such pathologies.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neurophysiological avenues to better conceptualizing adaptive cognition;Communications Biology;2024-05-24

2. Next generation neural population models;Frontiers in Applied Mathematics and Statistics;2023-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3