A guidance into the fungal metabolomic abyss: Network analysis for revealing relationships between exogenous compounds and their outputs

Author:

Meena Muralikrishnan GopalakrishnanORCID,Lane Matthew J.,Tannous JoannaORCID,Carrell Alyssa A.ORCID,Abraham Paul E.ORCID,Giannone Richard J.ORCID,Ané Jean-MichelORCID,Keller Nancy P.ORCID,Labbé Jesse L.ORCID,Kainer DavidORCID,Jacobson Daniel A.ORCID,Rush Tomás A.ORCID

Abstract

AbstractFungal specialized metabolites include many bioactive compounds with potential applications as pharmaceuticals, agrochemical agents, and industrial chemicals. Exploring and discovering novel fungal metabolites is critical to combat antimicrobial resistance in various fields, including medicine and agriculture. Yet, identifying the conditions or treatments that will trigger the production of specialized metabolites in fungi can be cumbersome since most of these metabolites are not produced under standard culture conditions. Here, we introduce a data-driven algorithm comprising various network analysis routes to characterize the production of known and putative specialized metabolites and unknown analytes triggered by different exogenous compounds. We use bipartite networks to quantify the relationship between the metabolites and the treatments stimulating their production through two routes. The first, called the direct route, determines the production of known and putative specialized metabolites induced by a treatment. The second, called the auxiliary route, is specific for unknown analytes. We demonstrated the two routes by applying chitooligosaccharides and lipids at two different temperatures to the opportunistic human fungal pathogen Aspergillus fumigatus. We used various network centrality measures to rank the treatments based on their ability to trigger a broad range of specialized metabolites. The specialized metabolites were ranked based on their receptivity to various treatments. Altogether, our data-driven techniques can track the influence of any exogenous treatment or abiotic factor on the metabolomic output for targeted metabolite research. This approach can be applied to complement existing LC/MS analyses to overcome bottlenecks in drug discovery and development from fungi.NoticeThis manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).Author summaryTriggering silent biosynthetic gene clusters in fungi to produce specialized metabolites is a tedious process that requires assessing various environmental conditions, applications of epigenetic modulating agents, or co-cultures with other microbes. We provide a data-driven solution using network analysis, called “direct route”, to characterize the production of known and putative specialized metabolites triggered by various exogenous compounds. We also provide a “auxiliary route” to distinguish unique unknown analytes amongst the abundantly produced analytes in response to these treatments. The developed techniques can assist researchers to identify treatments or applications that could positively influence the production of a targeted metabolite or recognize unique unknown analytes that can be further fractionated, characterized, and screened for their biological activities and hence, discover new metabolites.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3