SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks

Author:

González-Blas Carmen BravoORCID,De Winter SeppeORCID,Hulselmans GertORCID,Hecker NikolaiORCID,Matetovici IrinaORCID,Christiaens ValerieORCID,Poovathingal SureshORCID,Wouters JasperORCID,Aibar SaraORCID,Aerts SteinORCID

Abstract

Joint profiling of chromatin accessibility and gene expression of individual cells provides an opportunity to decipher enhancer-driven gene regulatory networks (eGRN). Here we present a new method for the inference of eGRNs, called SCENIC+. SCENIC+ predicts genomic enhancers along with candidate upstream transcription factors (TF) and links these enhancers to candidate target genes. Specific TFs for each cell type or cell state are predicted based on the concordance of TF binding site accessibility, TF expression, and target gene expression. To improve both recall and precision of TF identification, we curated and clustered more than 40,000 position weight matrices that we could associate with 1,553 human TFs. We validated and benchmarked each of the SCENIC+ components on diverse data sets from different species, including human peripheral blood mononuclear cell types, ENCODE cell lines, human melanoma cell states, and Drosophila retinal development. Next, we exploit SCENIC+ predictions to study conserved TFs, enhancers, and GRNs between human and mouse cell types in the cerebral cortex. Finally, we provide new capabilities that exploit the inferred eGRNs to study the dynamics of gene regulation along differentiation trajectories; to map regulatory activities onto tissues using spatial omics data; and to predict the effect of TF perturbations on cell state. SCENIC+ provides critical insight into gene regulation, starting from multiome atlases of scATAC-seq and scRNA-seq. The SCENIC+ suite is available as a set of Python modules at https://scenicplus.readthedocs.io.

Publisher

Cold Spring Harbor Laboratory

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3