Small Training Dataset Convolutional Neural Networks for Application Specific Super-Resolution Microscopy

Author:

Mannam VarunORCID,Howard ScottORCID

Abstract

ABSTRACTSignificanceMachine learning (ML) models based on deep convolutional neural networks have been used to significantly increase microscopy resolution, speed (signal-to-noise ratio), and data interpretation. The bottleneck in developing effective ML systems is often the need to acquire large datasets to train the neural network. This paper demonstrates how adding a “dense encoder-decoder” block can be used to effectively train a neural network that produces super-resolution images from conventional microscopy diffraction-limited images trained using a small dataset (15 field-of-views).AimML helps to retrieve super-resolution information from a diffraction-limited image when trained with a massive training dataset. The aim of this work is to demonstrate a neural network that estimates super-resolution images from diffraction-limited images using modifications that enable training with a small dataset.ApproachWe employ “Dense Encoder-Decoder” (called DenseED) blocks in existing super-resolution ML network architectures. DenseED blocks use a dense layer that concatenates features from the previous convolutional layer to the next convolutional layer. DenseED blocks in fully convolutional networks (FCNs) estimate the super-resolution images when trained with a small training dataset (15 field-of-views) of human cells from the Widefield2SIM dataset and in fluorescent-labeled fixed bovine pulmonary artery endothelial cells (BPAE samples).ResultsConventional ML models without DenseED blocks trained on small datasets fail to accurately estimate super-resolution images while models including the DenseED blocks can. The average peak signal-to-noise ratio (PSNR) and resolution improvements achieved by networks containing DenseED blocks are ≈3.2 dB and 2×, respectively. We evaluated various configurations of target image generation methods (e.g, experimentally captured target and computationally generated target) that are used to train FCNs with and without DenseED blocks and showed including DenseED blocks in simple FCNs outperforms compared to simple FCNs without DenseED blocks.ConclusionsDenseED blocks in neural networks show accurate extraction of super-resolution images even if the ML model is trained with a small training dataset of 15 field-of-views. This approach shows that microscopy applications can use DenseED blocks to train on smaller datasets that are application-specific imaging platforms and there is a promise for applying this to other imaging modalities such as MRI/X-ray, etc.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3