Rationally designed Gla-domainless FXa as TFPI bait in hemophilia

Author:

Dagher Marie-ClaireORCID,Ersayin Atanur,Seyve Landry,Castellan Mathieu,Moreau Cyril,Choisnard Luc,Thielens NicoleORCID,Marlu Raphaël,Polack BenoîtORCID,Thomas AlineORCID

Abstract

AbstractGla-domainless factor Xa (GD-FXa) was proposed as a trap to the endogenous anticoagulant Tissue Factor Pathway Inhibitor (TFPI) to restore thrombin generation in hemophilia. Using computational chemistry and experimental approaches, we previously showed that S195A GD-FXa also binds TFPI and restores ex vivo coagulation in hemophilia plasmas.To design a GD-FXa variant with improved anti-TFPI activity and identify suitable sites for mutagenesis, we performed molecular dynamics simulations. The calculations identified residues R150FXa and K96FXa as cold-spots of interaction between GD-FXa and the K2 domain of TFPI. In the three-dimensional model, both residues are facing TFPI hydrophobic residues and are thus potential candidates for mutagenesis into hydrophobic residues to favor an improved protein-protein interaction.Catalytically inactive GD-FXa variants containing the S195A mutation and additional mutations as K96Y, R150I, R150G and R150F were produced to experimentally confirm these computational hypotheses. Among these mutants, the R150FFXA showed increased affinity for TFPI as theoretically predicted, and was also more effective than S195A GD-FXa in restoring coagulation in FVIII deficient plasmas. Moreover, the R150 mutants lost interaction with antithrombin, which is favorable to extend their half-life.

Publisher

Cold Spring Harbor Laboratory

Reference29 articles.

1. Recombinant factor VIIa (NovoSeven) in the treatment of internal bleeding in patients with factor VIII and IX inhibitors;Haemostasis,1996

2. 2021 clinical trials update: Innovations in hemophilia therapy;Am J Hematol,2021

3. Novel approaches to hemophilia therapy: successes and challenges

4. Emicizumab Prophylaxis in Hemophilia A with Inhibitors

5. Non-factor replacement therapy for haemophilia: a current update;Blood Transfus,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3