Abstract
AbstractAppendicularian tunicates are some of the most abundant mesozooplankton organisms with key roles in marine trophic webs and global carbon flux. Like most appendicularians with cosmopolitan distributions, Oikopleura dioica Fol, 1872 is considered a single species worldwide based on morphological features that distinguish them from other appendicularians. Despite their abundance however, there are still only ∼70 described appendicularian species, compared with over 2,800 ascidian tunicates. Here we perform a molecular phylogenetic, morphological, and reproductive assessment of O. dioica specimens collected from the Ryukyu Archipelago, mainland Japan, and Europe. The specimens are morphologically very similar, with only detailed examination of the oikoplastic epithelium and quantitative measurements revealing minor distinguishing characteristics. Phylogenetic analyses of the ribosomal gene loci and mitochondrial cytochrome oxidase I (COI) gene strongly indicate that they form three separate genetic clades despite their morphological similarities. Finally, in vitro crosses between the Ryukyu and mainland Japanese specimens show total prezygotic reproductive isolation. Our results reveal that the current taxonomic O. dioica classification likely hides multiple cryptic species, highlighting the genetic diversity and complexity of their population structures. Cryptic organisms are often hidden under a single species name because their morphological similarities make them difficult to disinguish and their correct identification is fundamental to understanding Earth’s biodiversity. O. dioica is an attractive model to understand how morphological conservation can be maintained despite pronounced genetic divergence.
Publisher
Cold Spring Harbor Laboratory
Reference75 articles.
1. Alldredge A (2005) The contribution of discarded appendicularian houses to the flux of particulate organic carbon from oceanic surface waters. In: Gorsky G , Youngbluth MJ , Deubel D (ed), Response of Marine Ecosystems to Global Change: Ecological Impact of Appendicularians, Contemporary Publishing International, Paris, pp 309–326
2. Appendicularians;Sci Am,1976
3. House morphology and mechanisms of feeding in the Oikopleuridae (Tunicata, Appendicularia)
4. Cryptic species as a window on diversity and conservation
5. DNA barcoding of marine copepods: assessment of analytical approaches to species identification;PLoS Curr,2014