Heart murmur detection from phonocardiogram recordings: The George B. Moody PhysioNet Challenge 2022

Author:

Reyna Matthew A.ORCID,Kiarashi Yashar,Elola Andoni,Oliveira Jorge,Renna Francesco,Gu Annie,Perez Alday Erick A.,Sadr Nadi,Sharma Ashish,Kpodonu Jacques,Mattos Sandra,Coimbra Miguel T.,Sameni Reza,Rad Ali Bahrami,Clifford Gari D.ORCID

Abstract

AbstractCardiac auscultation is an accessible diagnostic screening tool that can help to identify patients with heart murmurs for follow-up diagnostic screening and treatment for abnormal cardiac function. However, experts are needed to interpret the heart sounds, limiting the accessibility of auscultation for cardiac care in resource-constrained environments. Therefore, the George B. Moody PhysioNet Challenge 2022 invited teams to develop algorithmic approaches for detecting heart murmurs and abnormal cardiac function from phonocardiogram (PCG) recordings of the heart sounds.For the Challenge, we sourced 5272 PCG recordings from 1568 pediatric patients in rural Brazil, and we invited teams to implement diagnostic screening algorithms for detecting heart murmurs and abnormal cardiac function from the recordings. We required the participants to submit the complete code for training and running their algorithms, improving the transparency, reproducibility, and utility of their work. We also devised an evaluation metric that considered the costs of screening, diagnosis, treatment, and diagnostic errors, allowing us to investigate the benefits of algorithmic diagnostic screening and facilitate the development of more clinically relevant algorithms.We received 779 algorithms from 87 teams during the course of the Challenge, resulting in 53 working codebases for detecting heart murmurs and abnormal cardiac function from PCGs. These algorithms represent a diversity of approaches from both academia and industry.The use of heart sound recordings for identifying heart murmurs and abnormal cardiac function allowed us to explore the potential of algorithmic approaches for providing accessible pre-screening in resource-constrained environments. The submission of working, open-source algorithms and the use of novel evaluation metrics supported the reproducibility, generalizability, and clinical relevance of the research from the Challenge.Author summaryCardiac auscultation is an accessible diagnostic screening tool for identifying heart murmurs. However, experts are needed to interpret heart sounds, limiting the accessibility of auscultation in cardiac care. The George B. Moody PhysioNet Challenge 2022 invited teams to develop algorithms for detecting heart murmurs and abnormal cardiac function from phonocardiogram (PCG) recordings of heart sounds.For the Challenge, we sourced 5272 PCG recordings from 1568 pediatric patients in rural Brazil. We required the participants to submit the complete code for training and running their algorithms, improving the transparency, reproducibility, and utility of their work. We also devised an evaluation metric that considered the costs of screening, diagnosis, treatment, and diagnostic errors, allowing us to investigate the benefits of algorithmic diagnostic screening and facilitate the development of more clinically relevant algorithms. We received 779 algorithms from 87 teams during the Challenge, resulting in 53 working codebases and publications that represented a diversity of approaches to detecting heart murmurs and identifying clinical outcomes from heart sound recordings.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3