Accuracy of non-parametric species richness estimators across taxa and regions

Author:

Soukainen Arttu,Cardoso PedroORCID

Abstract

AbstractNon-parametric species richness estimators are efficient and widely used when sampling is incomplete. There is little consensus on which of the available estimators works best across taxa and regions. Until now no work compared existing algorithms with multiple datasets encompassing contrasting scenarios.We used data from 62 inventories worldwide at different spatial scales, including 20 vertebrate, 22 invertebrate and 20 plant datasets, and compared the accuracy of the most used non-parametric estimators (Chao and Jackknife) and improvements to their original formulations.Our results highlight the good performance of the Jackknife estimators for incidence data, especially the P-corrected first order jackknife estimator (Jack1inP). This algorithm ranked most often the best or among the best performing estimators using two measures of accuracy that measure deviation from expectation along the accumulation curve.We argue that Jack1inP can be considered a universal estimator for species richness, regardless of taxon, temporal and spatial scales, or completeness of the sampling. More research should however be directed towards finding the precise contexts when each estimator might perform best.

Publisher

Cold Spring Harbor Laboratory

Reference29 articles.

1. Arthropod Diversity in a Tropical Forest

2. Choosing the best non-parametric richness estimator for benthic macroinvertebrates databases;Revista de la Sociedad Entomológica Argentina,2011

3. Assessing the efficiency of non-parametric estimators of species richness for marine microplankton;Journal of Plankton Research,2018

4. Performance of richness estimators for invertebrate inventories in reservoirs;Environmental Monitoring and Assessment,2021

5. Estimating species richness of pitfall catches by non-parametric estimators

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3