A dynamic sequence of visual processing initiated by gaze shifts

Author:

Parker Philip R. L.ORCID,Martins Dylan M.ORCID,Leonard Emmalyn S. P.ORCID,Casey Nathan M.,Sharp Shelby L.ORCID,Abe Elliott T. T.ORCID,Smear Matthew C.ORCID,Yates Jacob L.ORCID,Mitchell Jude F.ORCID,Niell Cristopher M.ORCID

Abstract

AbstractAnimals move their head and eyes as they explore and sample the visual scene. Previous studies have demonstrated neural correlates of head and eye movements in rodent primary visual cortex (V1), but the sources and computational roles of these signals are unclear. We addressed this by combining measurement of head and eye movements with high density neural recordings in freely moving mice. V1 neurons responded primarily to gaze shifts, where head movements are accompanied by saccadic eye movements, but not to head movements where compensatory eye movements stabilize gaze. A variety of activity patterns immediately followed gaze shifts, including units with positive, biphasic, or negative responses, and together these responses formed a temporal sequence following the gaze shift. These responses were greatly diminished in the dark for the vast majority of units, replaced by a uniform suppression of activity, and were similar to those evoked by sequentially flashed stimuli in head-fixed conditions, suggesting that gaze shift transients represent the temporal response to the rapid onset of new visual input. Notably, neurons responded in a sequence that matches their spatial frequency preference, from low to high spatial frequency tuning, consistent with coarse-to-fine processing of the visual scene following each gaze shift. Recordings in foveal V1 of freely gazing head-fixed marmosets revealed a similar sequence of temporal response following a saccade, as well as the progression of spatial frequency tuning. Together, our results demonstrate that active vision in both mice and marmosets consists of a dynamic temporal sequence of neural activity associated with visual sampling.HighlightsDuring free movement, neurons in mouse V1 respond to head movements that are accompanied by a gaze-shifting saccadic eye movement, but not a compensatory eye movement.Neurons respond to gaze shifts with diverse temporal dynamics that form a sequence across the population, from early positive responses to biphasic and negative responses.In darkness, most neurons show a uniform suppression following a gaze shift.Temporal dynamics of responses correspond to a neuron’s temporal and spatial frequency preferences, consistent with a coarse-to-fine processing sequence.A similar temporal sequence following saccades is observed in foveal V1 of freely gazing head-fixed marmosets, demonstrating shared aspects of active visual processing across species.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3