A Deep Learning Approach to Forecast Short-Term COVID-19 Cases and Deaths in the US

Author:

Du HongruORCID,Dong EnshengORCID,Badr Hamada S.ORCID,Petrone Mary E.,Grubaugh Nathan D.ORCID,Gardner Lauren M.

Abstract

AbstractSince the US reported its first COVID-19 case on January 21, 2020, the science community has been applying various techniques to forecast incident cases and deaths. To date, providing an accurate and robust forecast at a high spatial resolution has proved challenging, even in the short term. Here we present a novel multi-stage deep learning model to forecast the number of COVID-19 cases and deaths for each US state at a weekly level for a forecast horizon of 1 to 4 weeks. The model is heavily data driven, and relies on epidemiological, mobility, survey, climate, and demographic. We further present results from a case study that incorporates SARS-CoV-2 genomic data (i.e. variant cases) to demonstrate the value of incorporating variant cases data into model forecast tools. We implement a rigorous and robust evaluation of our model – specifically we report on weekly performance over a one-year period based on multiple error metrics, and explicitly assess how our model performance varies over space, chronological time, and different outbreak phases. The proposed model is shown to consistently outperform the CDC ensemble model for all evaluation metrics in multiple spatiotemporal settings, especially for the longer-term (3 and 4 weeks ahead) forecast horizon. Our case study also highlights the potential value of virus genomic data for use in short-term forecasting to identify forthcoming surges driven by new variants. Based on our findings, the proposed forecasting framework improves upon the available forecasting tools currently used to support public health decision making with respect to COVID-19 risk.Research in contextEvidence before this studyA systematic review of the COVID-19 forecasting and the EPIFORGE 2020 guidelines reveal the lack of consistency, reproducibility, comparability, and quality in the current COVID-19 forecasting literature. To provide an updated survey of the literature, we carried out our literature search on Google Scholar, PubMed, and medRxi, using the terms “Covid-19,” “SARS-CoV-2,” “coronavirus,” “short-term,” “forecasting,” and “genomic surveillance.” Although the literature includes a significant number of papers, it remains lacking with respect to rigorous model evaluation, interpretability and translation. Furthermore, while SARS-CoV-2 genomic surveillance is emerging as a vital necessity to fight COVID-19 (i.e. wastewater sampling and airport screening), to our knowledge, no published forecasting model has illustrated the value of virus genomic data for informing future outbreaks.Added value of this studyWe propose a multi-stage deep learning model to forecast COVID-19 cases and deaths with a horizon window of four weeks. The data driven model relies on a comprehensive set of input features, including epidemiological, mobility, behavioral survey, climate, and demographic. We present a robust evaluation framework to systematically assess the model performance over a one-year time span, and using multiple error metrics. This rigorous evaluation framework reveals how the predictive accuracy varies over chronological time, space, and outbreak phase. Further, a comparative analysis against the CDC ensemble, the best performing model in the COVID-19 ForecastHub, shows the model to consistently outperform the CDC ensemble for all evaluation metrics in multiple spatiotemporal settings, especially for the longer forecasting windows. We also conduct a feature analysis, and show that the role of explanatory features changes over time. Specifically, we note a changing role of climate variables on model performance in the latter half of the study period. Lastly, we present a case study that reveals how incorporating SARS-CoV-2 genomic surveillance data may improve forecasting accuracy compared to a model without variant cases data.Implications of all the available evidenceResults from the robust evaluation analysis highlight extreme model performance variability over time and space, and suggest that forecasting models should be accompanied with specifications on the conditions under which they perform best (and worst), in order to maximize their value and utility in aiding public health decision making. The feature analysis reveals the complex and changing role of factors contributing to COVID-19 transmission over time, and suggests a possible seasonality effect of climate on COVID-19 spread, but only after August 2021. Finally, the case study highlights the added value of using genomic surveillance data in short-term epidemiological forecasting models, especially during the early stage of new variant introductions.

Publisher

Cold Spring Harbor Laboratory

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3