Abstract
ABSTRACTThe MUS81 complex is crucial for preserving genome stability through resolution of branched DNA intermediates in mitosis and also for the processing of deprotected replication forks in BRCA2-deficient cells. Because of the existence of two different MUS81 complexes in mammalian cells that act in M or S-phase, whether and how the PARPi sensitivity of BRCA2-deficient cells is affected by loss of MUS81 function is unclear.Here, using a mutant of MUS81 that impairs its function in M-phase, we show that viability of BRCA2-deficient cells but not their PARPi sensitivity requires a fully-functional MUS81 complex in mitosis. In contrast, expression of a constitutively-active MUS81 is sufficient to confer PARPi resistance. From a mechanistic point of view, our data indicates that deregulated action of the mitotic active form of MUS81 in S-phase leads to the cleavage of stalled replication forks before their reversal, bypassing fork deprotection, and engaging a Polθ-dependent DSBs repair.Collectively, our findings describe a novel mechanism leading to PARPi resistance that involves unscheduled MUS81-dependent cleavage of intact, unreversed replication forks. Since this cleavage occurs mimicking the phosphorylated status of S87 of MUS81, our data suggest that hyperphosphorylation of this residue in S-phase might represent a novel biomarker to identify resistance to PARPi.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献