A megaprotein-based molecular bridge critical for lipid trafficking and cold resilience

Author:

Wang Changnan,Wang Bingying,Pandey Taruna,Long YongORCID,Zhang Jianxiu,Oh Fiona,Sima Jessica,Guo Ruyin,Liu YunORCID,Zhang Chao,Mukherjee ShaeriORCID,Bassik MichaelORCID,Lin WeichunORCID,Deng Huichao,Vale Goncalo,McDonald Jeffrey,Shen KangORCID,Ma Dengke K.ORCID

Abstract

AbstractCells adapt to cold by increasing levels of unsaturated phospholipids and membrane fluidity through homeostatic mechanisms conserved in nearly all forms of life. As most eukaryotic enzymes for lipid synthesis and desaturation localize on endoplasmic reticulum (ER) membranes, it remains unknown how ER-resident lipids rapidly distribute to plasma membranes (PM). Here we report an exceptionally large and evolutionarily conserved protein LPD-3 in C. elegans that plays critical roles in lipid trafficking and cold resilience. We identified lpd-3 mutants in a mutagenesis screen for genetic suppressors of the lipid desaturase FAT-7, and found that the 452 kDa megaprotein LPD-3 bridges ER and PM, consisting of a structurally predicted hydrophobic tunnel for lipid trafficking. Loss of LPD-3 caused abnormal cellular distribution of phospholipids, diminished FAT-7 abundance, and organismic vulnerability to cold. These phenotypic defects of lpd-3 mutants were rescued by Lecithin comprising unsaturated phospholipids. Importantly, we found that deficient lpd-3 homologues in Zebrafish and mammalian cells led to defects similar to those observed in C. elegans. As mutations in KIAA1109/BLTP1, the human orthologue of lpd-3, cause Alkuraya-Kucinskas syndrome, we propose that the LPD-3 family proteins may serve as evolutionarily conserved “highway bridges” critical for ER-associated non-vesicular trafficking of lipids and resilience to cold stress in eukaryotic cells.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3