Solid/liquid coexistence during aging of FUS condensates

Author:

Shen YiORCID,Chen Anqi,Wang Wenyun,Shen Yinan,Ruggeri Francesco Simone,Aime Stefano,Wang Zizhao,Qamar Seema,Espinosa Jorge R.,Garaizar Adiran,George-Hyslop Peter St,Collepardo-Guevara RosanaORCID,Weitz David A.ORCID,Vigolo Daniele,Knowles Tuomas P. J.

Abstract

AbstractA wide range of macromolecules undergo phase separation, forming biomolecular condensates in living cells. These membraneless organelles are typically highly dynamic, formed in a reversible manner, and carry out important functions in biological systems. Crucially, however, a further liquid-to-solid transition of the condensates can lead to irreversible pathological aggregation and cellular dysfunction associated with the onset and development of neurodegenerative diseases. Despite the importance of this liquid-to-solid transition of proteins, the mechanism by which it is initiated in normally functional condensates is unknown. Here we show, by measuring the changes in structure, dynamics and mechanics in time and space, that FUS condensates do not uniformly convert to a solid gel, but rather that liquid and gel phases co-exist simultaneously within the same condensate, resulting in highly inhomogeneous structures. We introduce two new optical techniques, dynamic spatial mapping and reflective confocal dynamic speckle microscopy, and use these to further show that the liquid-to-solid transition is initiated at the interface between the dense phase within condensates and the dilute phase. These results reveal the importance of the spatiotemporal dimension of the liquid-to-solid transition and highlight the interface of biomolecular condensates as a key element in driving pathological protein aggregation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3