Yeast display platform for expression of linear peptide epitopes to assess peptide-MHC-II binding in high-throughput

Author:

Huisman Brooke D.,Balivada Pallavi A.,Birnbaum Michael E.

Abstract

AbstractYeast display can serve as a powerful tool to assess peptide-MHC (pMHC) and pMHC-TCR binding. However, this approach is often limited by the need to optimize MHC proteins for yeast surface expression, which can be laborious and may not yield productive results. Here we present a second-generation yeast display platform for class II MHC molecules (MHC-II) which decouples MHC-II expression from yeast-expressed peptides, referred to as “peptide display”. Peptide display obviates the need for yeast-specific MHC optimizations and increases the scale of MHC-II alleles available for use in yeast display screens. Because MHC identity is separated from the peptide library, a further benefit of this platform is the ability to assess a single library of peptides against any MHC-II. We demonstrate the utility of the peptide display platform across MHC-II proteins, screening HLA-DR, HLA-DP, and HLA-DQ alleles. We further explore parameters of selections, including reagent dependencies, MHC avidity, and use of competitor peptides. This approach presents an advance in throughput and accessibility of screening peptide-MHC-II binding.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3