Exercise exacerbates decline in the musculature of an animal model of Duchenne muscular dystrophy

Author:

Hughes KJ,Rodriguez A,Schuler A,Rodemoyer B,Barickman L,Cuciarone K,Kullman A,Lim C,Gutta N,Vemuri S,Andriulis V,Niswonger D,Vidal-Gadea AG

Abstract

ABSTRACTDuchenne muscular dystrophy (DMD) is a genetic disorder caused by loss of the protein dystrophin. In humans, DMD has early onset, causes developmental delays, muscle necrosis, loss of ambulation, and early death. Current animal models have been challenged by their inability to model the early onset and severity of the disease. Thus it remains unresolved if increased sarcoplasmic calcium observed in dystrophic muscles follows or leads the mechanical insults caused by the muscle’s disrupted contractile machinery. This knowledge has important applications for patients, as potential physiotherapeutic treatments may either help or exacerbate symptoms, depending on how dystrophic muscles differ from healthy ones. Recently we showed how burrowing dystrophic (dys-1)C. elegansrecapitulate many salient phenotypes of DMD, including loss of mobility and muscle necrosis. Here we reportdys-1worms display early pathogenesis, including dysregulated sarcoplasmic calcium, and increased lethality. Sarcoplasmic calcium dysregulation indys-1worms precedes overt structural phenotypes (e.g. mitochondrial, and contractile machinery damage) and can be mitigated by silencing calmodulin expression. To learn how dystrophic musculature responds to altered physical activity, we cultivateddys-1animals in environments requiring high amplitude, or high frequency of muscle exertion during locomotion. We find that several muscular parameters (such as size) improve with increased activity. However, longevity in dystrophic animals was negatively associated with muscular exertion, regardless of the duration of the effort. The high degree of phenotypic conservation between dystrophic worms and humans provides a unique opportunity to gain insights into the etiology of the disease, as well as the initial assessment of potential treatment strategies.SIGNIFICANCEDuchenne muscular dystrophy is a degenerative disease affecting tens of thousands of people in the US alone. Much remains unknown about the disease, including the chain of events that links the loss of dystrophin to muscle death, or the extent to which exercise might be able to protect degenerating muscles. We used the nematodeC. elegansto show that sarcoplasmic calcium dysregulation takes place in dystrophic muscles long before other overt signs of damage manifest. When placed in assays that altered muscular activity by increasing either contraction frequency or amplitude, we observed several metrics associated with muscular repair increase. However, no treatment positively affected the life expectancy of dystrophic animals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3