Electromechanics and Volume Dynamics in Non-excitable Tissue Cells

Author:

Yellin F.,Li Y.,Sreenivasan V. K. A.,Farrell B.,Johny M. B.,Yue D.,Sun S. X.

Abstract

AbstractCell volume regulation is fundamentally important in phenomena such as cell growth, proliferation, tissue homeostasis and embryogenesis. How the cell size is set, maintained, and changed over a cell’s lifetime is not well understood. In this work we focus on how the volume of non-excitable tissue cells is coupled to the cell membrane electrical potential and the concentration of membrane-permeable ions in the cell environment. Specifically, we demonstrate that a sudden cell depolarization using the whole cell patch clamp results in a 30 percent increase in cell volume, while hyperpolarization results in a slight volume decrease. We find that cell volume can be partially controlled by changing the chloride or the sodium/potassium concentrations in the extracellular environment while maintaining a constant external osmotic pressure. Depletion of external chloride leads to a volume decrease in suspended HN31 cells. Introducing cells to a high potassium solution causes volume increase by up to 50%. Cell volume is also influenced by cortical tension: actin depolymerization leads to cell volume increase. We present an electrophysiology model of water dynamics driven by changes in membrane potential and in the concentration of permeable ions in the cell surrounding. The model quantitatively predicts that the cell volume is determined by the total amount of intracellular ion and protein content.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3