Accelerated brain aging towards transcriptional inversion in a zebrafish model of familial Alzheimer’s disease

Author:

Hin NhiORCID,Newman MorganORCID,Kaslin JanORCID,Douek Alon M.,Lumsden AmandaORCID,Zhou Xin-FuORCID,Ludington Alastair,Adelson David L.ORCID,Pederson StephenORCID,Lardelli MichaelORCID

Abstract

AbstractAlzheimer’s disease (AD) develops silently over decades. We cannot easily access and analyse pre-symptomatic brains, so the earliest molecular changes that initiate AD remain unclear. Previously, we demonstrated that the genes mutated in early-onset, dominantly-inherited familial forms of AD (fAD) are evolving particularly rapidly in mice and rats. Fortunately, some non-mammalian vertebrates such as the zebrafish preserve fAD-relevant transcript isoforms of the PRESENILIN (PSEN1 and PSEN2) genes that these rodents have lost. Zebrafish are powerful vertebrate genetic models for many human diseases, but no genetic model of fAD in zebrafish currently exists. We edited the zebrafish genome to model the unique, protein-truncating fAD mutation of human PSEN2, K115fs. Analysing the brain transcriptome and proteome of young (6-month-old) and aged, infertile (24-month-old) wild type and heterozygous fAD-like mutant female sibling zebrafish supports accelerated brain aging and increased glucocorticoid signalling in young fAD-like fish, leading to a transcriptional ‘inversion’ into glucocorticoid resistance and vast changes in biological pathways in aged, infertile fAD-like fish. Notably, one of these changes involving microglia-associated immune responses regulated by the ETS transcription factor family is preserved between our zebrafish fAD model and human early-onset AD. Importantly, these changes occur before obvious histopathology and likely in the absence of Aβ. Our results support the contributions of early metabolic and oxidative stresses to immune and stress responses favouring AD pathogenesis and highlight the value of our fAD-like zebrafish genetic model for elucidating early changes in the brain that promote AD pathogenesis. The success of our approach has important implications for future modelling of AD.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3