Evolution of Nodal and Nodal-related genes and the putative composition of the heterodimer that triggers the Nodal pathway in vertebrates

Author:

Opazo Juan C.ORCID,Kuraku ShigehiroORCID,Zavala Kattina,Toloza-Villalobos Jessica,Hoffmann Federico G.ORCID

Abstract

AbstractNodal is a signaling molecule that belongs to the transforming growth factor-beta superfamily that plays key roles during the early stages of development of animals. Nodal forms an heterodimer with a GDF1/3 protein to activate the Nodal pathway. Vertebrates have a paralog of nodal in their genomes labeled Nodal related, but the evolutionary history of these genes is a matter of debate, mainly because of variable numbers of genes in the vertebrate genomes sequenced so far. Thus, the goal of this study was to investigate the evolutionary history of the Nodal and Nodal-related genes with an emphasis in tracking changes in the number of genes among vertebrates. Our results show the presence of two gene lineages (Nodal and Nodal-related) that can be traced back to the ancestor of jawed vertebrates. These lineages have undergone processes of differential retention and lineage-specific expansions. Our results imply that Nodal and Nodal-related duplicated at the latest in the ancestor of gnathostomes, and they still retain a significant level of functional redundancy. By comparing the evolution of the Nodal/Nodal-related with GDF1/3 gene family, it is possible to infer that there are at least four types of heterodimers that can trigger the Nodal pathway among vertebrates.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3