Discovery of the role of a SLOG superfamily biological conflict systems associated protein IodA (YpsA) in oxidative stress protection and cell division inhibition in Gram-positive bacteria

Author:

Brzozowski Robert S.,Graham Gianni,Burroughs A. Maxwell,Huber Mirella,Walker Merryck,Alva Sameeksha S.,Aravind L.,Eswara Prahathees J.ORCID

Abstract

ABSTRACTBacteria adapt to different environments by regulating cell division and several conditions that modulate cell division have been documented. Understanding how bacteria transduce environmental signals to control cell division is critical to comprehend the global network of cell division regulation. In this article we describe a role forBacillus subtilisYpsA, an uncharacterized protein of the SLOG superfamily of nucleotide and ligand-binding proteins, in cell division. We observed that YpsA provides protection against oxidative stress as cells lackingypsAshow increased susceptibility to hydrogen peroxide treatment. We found that increased expression ofypsAleads to cell division inhibition due to defective assembly of FtsZ, the tubulin-like essential protein that marks the sites of cell division. We showed that cell division inhibition by YpsA is linked to glucose availability. We generated YpsA mutants that are no longer able to inhibit cell division. Finally, we show that the role of YpsA is possibly conserved in Firmicutes, as overproduction of YpsA inStaphylococcus aureusalso impairs cell division. Therefore, we proposeypsAto be renamed asiodAforinhibitorofdivision.IMPORTANCEAlthough key players of cell division in bacteria have been largely characterized, the factors that regulate these division proteins are still being discovered and evidence for the presence of yet-to-be discovered factors has been accumulating. How bacteria sense the availability of nutrients and how that information is used to regulate cell division positively or negatively is less well-understood even though some examples exist in the literature. We discovered that a protein of hitherto unknown function belonging to the SLOG superfamily of nucleotide/ligand-binding proteins, YpsA, influences cell division inBacillus subtilisby integrating metabolic status such as the availability of glucose. We showed that YpsA is important for oxidative stress response inB. subtilis. Furthermore, we provide evidence that cell division inhibition function of YpsA is also conserved in another FirmicuteStaphylococcus aureus. This first report on the role of YpsA (IodA) brings us a step closer in understanding the complete tool set that bacteria have at their disposal to regulate cell division precisely to adapt to varying environmental conditions.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3