Abstract
AbstractThe adult tongue epithelium is continuously renewed from epithelial progenitor cells, and this process relies on intact Hedgehog (HH) signaling. In mice, inhibition of the HH pathway using Smoothened antagonists (HH pathway inhibitors or HPIs) leads to taste bud loss over a span of several weeks. Previously, we demonstrated that overexpression of Sonic Hedgehog (SHH) in lingual epithelial progenitors induces formation of ectopic taste buds accompanied by locally increased SOX2 expression, consistent with the hypothesis that taste bud differentiation depends on SOX2 downstream of HH. To test this idea, we inhibited HH signaling by treating SOX2-GFP mice with HPI and found a rapid and drastic decline in SOX2-GFP expression in taste progenitors and taste buds. Using a conditional Cre-lox system to delete Sox2, we found that loss of SOX2 blocks differentiation of both taste buds and non-taste epithelium that comprises the majority of the tongue surface; progenitor cells increase in number at the expense of differentiated taste cells and lingual keratinocytes. In contrast to the normal pattern of basally restricted proliferation, dividing cells are overabundant, disorganized and present in suprabasal epithelial layers in Sox2 deleted tongues. Additionally, SOX2 loss in taste progenitors leads non-cell autonomously to rapid loss of taste bud cells via apoptosis, dramatically shortening taste cell lifespans. Finally, when Sox2 is conditionally deleted in mice with constitutive overexpression of SHH, ectopic taste buds fail to form and endogenous taste buds disappear; instead, robust hyperproliferation takes over the entire lingual epithelium. In sum, our experiments suggest that SOX2 functions downstream of HH signaling to regulate lingual epithelium homeostasis.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献