A bHLH-PAS protein regulates light-dependent diurnal rhythmic processes in the marine diatomPhaeodactylum tricornutum

Author:

Annunziata Rossella,Ritter Andrés,Fortunato Antonio Emidio,Cheminant-Navarro Soizic,Agier Nicolas,Huysman Marie J. J.,Winge Per,Bones Atle,Bouget François-Yves,Lagomarsino Marco Cosentino,Bouly Jean Pierre,Falciatore Angela

Abstract

ABSTRACTPeriodic light-dark cycles govern the timing of basic biological processes in organisms inhabiting land as well as the sea, where life evolved. Although prominent marine phytoplanktonic organisms such as diatoms show robust diurnal rhythms in growth, cell cycle and gene expression, the molecular foundations controlling these processes are still obscure. By exploring the regulatory landscape of diatom diurnal rhythms, we unveil the function of aPhaeodactylum tricornutumbHLH-PAS protein,PtbHLH1a, in the regulation of light-dependent diurnal rhythms. Peak expression ofPtbHLH1amRNA occurs toward the end of the light period and it adjusts to photoperiod changes. Ectopic over-expression ofPtbHLH1a results in lines showing a phase shift in diurnal cell fluorescence, compared to the wild-type cells, and with altered cell cycle progression and gene expression. Reduced oscillations in gene expression are also observed in overexpression lines compared to wild-type in continuous darkness, showing that the regulation of rhythmicity byPtbHLH1a is not directly dependent on light inputs and cell division.PtbHLH1a homologs are widespread in diatom genomes which may indicate a common function in many species. This study adds new elements to understand diatom biology and ecology and offers new perspectives to elucidate timekeeping mechanisms in marine organisms belonging to a major, but underinvestigated branch of the tree of life.SIGNIFICANCE STATEMENTMost organisms experience diurnal light-dark changes and show rhythms of basic biological processes such that they occur at optimal times of the day. The ocean harbours a huge diversity of organisms showing light-dependent rhythms, but their molecular foundations are still largely unknown. In this study, we discover a novel protein,PtbHLH1a that regulates cell division, gene expression and the diurnal timing of these events in the marine diatomPhaedoactylum tricornutum. The identification ofPtbHLH1a-like genes in many diatom species suggests a conserved function in diurnal rhythm regulation in the most species-rich group of algae in the ocean. This study unveils critical features of diatom biology and advances the field of marine rhythms and their environmental regulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3