EWI-2 Inhibits Cell-Cell Fusion at the Virological Presynapse

Author:

Whitaker Emily E.,Symeonides MenelaosORCID,Munson Phillip B.,Thali MarkusORCID

Abstract

AbstractCell-to-cell transfer of virus particles through the virological synapse (VS) is a highly efficient mode of HIV-1 transmission. Formation of the VS, a transient multiform adhesion structure, is mediated through an interaction between the HIV-1 envelope glycoprotein (Env) and the viral receptor CD4 on the surface of infected cell and target cell, respectively. Given that Env, unlike many other viral fusogens, can mediate the merger of membranes at neutral pH, the close encounter of infected and uninfected cells would seem prone to result in cell-cell fusion and thus the formation of syncytia. However, while it is being recognized now that small, T cell-based syncytia are indeed a defining feature of the natural history of HIV-1, the majority of VSs nevertheless resolve without fusion, thus securing continued virus spread. Gag, the main viral structural component, is partially responsible for restraining Env and preventing it from becoming fusogenic before being incorporated into particles. In addition, a few cellular factors, including tetraspanins and ezrin, have also been shown to inhibit Env’s activity while this fusogen is still part of the producer cell.Here, we identify EWI-2, a protein that was previously shown to associate with the tetraspanins CD9 and CD81 and also with ezrin, as a host factor that contributes to the inhibition of Env­mediated cell-cell fusion. Using fluorescence microscopy, flow cytometry, and TZM-bl fusion assays, we show that EWI-2, comparable to tetraspanins, while overall being downregulated upon HIV-1 infection, accumulates at the producer cell side of the VS (i.e. the presynapse), where it contributes to the fusion-preventing activities of the other viral and cellular components.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3