Dose-response surface fits to drought and nitrogen limitation applied together allow mapping of loci that exhibit nonlinear responses

Author:

Chang Megan M.,Nail Danielle Allery,Kazic Toni,Simmons Susan J.,Stapleton Ann E.ORCID

Abstract

ABSTRACTCrop improvement must accelerate to feed an increasing human population in the face of environmental changes. Breeding programs can include anticipated climatic changes and genetic architecture to optimize improvement strategies. We analyzed the genetic architecture underlying the response of Zea mays to combinations of water and nitrogen stresses. Recombinant inbreds were subjected to nine combinations of the two stresses using an optimized response surface design, and their growth was measured. Three-dimensional dose response surfaces were fit globally and to each polymorphic allele to determine which genetic markers were associated with different response surfaces. Three quantitative trait loci that produced nonlinear surfaces were mapped. Alleles that performed better in combinations of mid-range stresses were typically not the alleles that performed best under combinations of extreme stresses. To develop physiologically relevant models for future genetic analyses, we modeled the network that explains the response surfaces. The network contains two components, an elliptical paraboloid and a plane, that each combine the nitrogen and water inputs. The relative weighting of the two components and the inputs is governed by five parameters. We estimated parameter values for the smoothed surfaces from the experimental lines using a set of points that covered the most distinctive regions of the three-dimensional surfaces. Surfaces computed using these values reproduced the smoothed experimental surfaces well, especially in the neighborhood of the peaks, as judged by three different criteria. The parameters exaggerated the amplitudes of the simulated surfaces. Experiments using single stresses could misestimate responses to their combinations and disguise loci that respond nonlinearly. The three-dimensional shape evaluation strategy used here more thoroughly compares nonlinear, nonplanar responses. We encourage the application of our findings and methods to experiments that mix crop protection measures, stresses, or both, on elite and landrace germplasm.

Publisher

Cold Spring Harbor Laboratory

Reference55 articles.

1. Adler, D. , D. Murdoch , et al., 2017–present Package ‘rgl’. CRAN, https://cran.r-project.org/web/packages/-rgl/rgl.pdf.

2. Topological sensitivity analysis for systems biology

3. Balko, L. G. and W. A. Russell , 1980 Response of maize inbred lines to N fertilizer. Agron. J. 72: 723.

4. Barter, R. L. , 2017–present Superheat Vignette. GitHub, https://-rlbarter.github.io/superheat.

5. Bartholomew-Biggs, M. C. , 2008 Nonlinear Optimization with Engineering Applications. Springer Verlag, New York.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3