CEP290 myosin-tail homology domain is essential for protein confinement between inner and outer segments in photoreceptors

Author:

Datta Poppy,Hendrickson Brandon,Brendalen Sarah,Ruffcorn Avri,Seo SeongjinORCID

Abstract

ABSTRACTMutations in CEP290 cause various ciliopathies involving retinal degeneration. CEP290 proteins localize to the ciliary transition zone and are thought to act as a gatekeeper that controls ciliary protein trafficking. However, precise roles of CEP290 in photoreceptors and pathomechanisms of retinal degeneration in CEP290-associated ciliopathies are not sufficiently understood. Using Cep290 conditional mutant mice, in which the C-terminal myosin-tail homology domain is disrupted after the connecting cilium is assembled, we show that CEP290, more specifically the myosin-tail homology domain of CEP290, is essential for protein confinement between the inner and the outer segments. Inner segment plasma membrane proteins including STX3, SNAP25, and IMPG2 rapidly accumulate in the outer segment upon disruption of the myosin-tail homology domain. In contrast, localization of endomembrane proteins is not altered. Trafficking and confinement of most outer segment-resident proteins appear to be unaffected or only minimally affected in this mouse model. One notable exception is RHO, which exhibits severe mislocalization to inner segments from the initial stage of degeneration. Similar mislocalization phenotypes were observed in rd16 mice. These results suggest that failure of protein confinement at the connecting cilium and consequent accumulation of inner segment membrane proteins in the outer segment combined with insufficient RHO delivery is part of the disease mechanisms that cause retinal degeneration in CEP290-associated ciliopathies. Our study provides insights into the pathomechanisms of retinal degenerations associated with compromised ciliary gates.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3