Optimizing the Timing and Composition of Therapeutic Phage Cocktails: A Control-theoretic Approach

Author:

Li Guanlin,Leung Chung Yin,Wardi Yorai,Debarbieux Laurent,Weitz Joshua S.

Abstract

AbstractViruses that infect bacteria, i.e., bacteriophage or ‘phage’, are increasingly considered as treatment options for the control and clearance of bacterial infections, particularly as compassionate use therapy for multi-drug resistant infections. In practice, clinical use of phage often involves the application of multiple therapeutic phage, either together or sequentially. However, the selection and timing of therapeutic phage delivery remains largely ad hoc. In this study, we evaluate principles underlying why careful application of multiple phage (i.e., a ‘cocktail’) might lead to therapeutic success in contrast to the failure of single-strain phage therapy to control an infection. First, we use a nonlinear dynamics model of within-host interactions to show that a combination of fast intra-host phage decay, evolution of phage resistance amongst bacteria, and/or compromised immune response might limit the effectiveness of single-strain phage therapy. To resolve these problems, we combine dynamical modeling of phage, bacteria, and host immune cell populations with control-theoretic principles (via optimal control theory) to devise evolutionarily robust phage cocktails and delivery schedules to control the bacterial populations. Our numerical results suggest that optimal administration of single-strain phage therapy may be sufficient for curative outcomes in immunocompetent patients, but may fail in immunodeficient hosts due to phage resistance. We show that optimized treatment with a two-phage cocktail that includes a counter-resistant phage can restore therapeutic efficacy in immunodeficient hosts.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. Modeling and analysis of a marine bacteriophage infection

2. Optimal control of vector-borne diseases: treatment and prevention;Discrete and Continuous Dynamical Systems B,2009

3. Kalijn F Bol , Gerty Schreibelt , Winald R Gerritsen , I Jolanda M De Vries , and Carl G Figdor . Dendritic cell–based immunotherapy: state of the art and beyond, 2016.

4. Optimal control in the treatment of retinitis pigmentosa;Bulletin of mathematical biology,2014

5. Optimal Control in a Model of Dendritic Cell Transfection Cancer Immunotherapy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3