Functional analysis of NTF-1, a developmentally regulated Drosophila transcription factor that binds neuronal cis elements.

Author:

Dynlacht B D,Attardi L D,Admon A,Freeman M,Tjian R

Abstract

In an effort to characterize sequence-specific transcription factors that regulate gene expression during Drosophila development, we identified and purified a novel DNA-binding activity (NTF-1). The purified protein consists of several polypeptides that bind selectively to a functionally important cis-control element of the Ultrabithorax (Ubx) promoter and to the neurogenic elements of both the dopa decarboxylase (Ddc) and fushi tarazu (ftz) promoter/enhancer regions. Purified NTF-1 activates transcription in vitro in a binding site-dependent manner through upstream sequences of the Ubx promoter. A cDNA clone encoding the open reading frame of NTF-1 was isolated, and the deduced primary amino acid sequence of NTF-1 includes a glutamine-rich region reminiscent of the transcriptional activation domains found in Sp1 but no recognizable DNA-binding domain. NTF-1 expression is temporally regulated during embryonic development. In addition, in situ hybridization experiments revealed that NTF-1 is transcribed in a spatially restricted pattern in the embryo, with the highest level of expression observed in the epidermis and a subset of cells in the CNS. Expression of the NTF-1 cDNA in mammalian cells yields a protein that displays DNA-binding and transcriptional activities indistinguishable from that of the collection of proteins isolated from Drosophila embryos. These findings suggest that NTF-1 is a member of a family of developmentally regulated transcription factors that may be involved in directing the expression of genes such as Ubx, Ddc, and ftz in neuronal cells.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3