Abstract
High-throughput single-cell RNA-Seq (scRNA-Seq) is a powerful approach for studying heterogeneous tissues and dynamic cellular processes. However, compared to bulk RNA-Seq, single-cell expression profiles are extremely noisy, as they only capture a fraction of the transcripts present in the cell. Here, we propose the k-nearest neighbor smoothing (kNN-smoothing) algorithm, designed to reduce noise by aggregating information from similar cells (neighbors) in a computationally efficient and statistically tractable manner. The algorithm is based on the observation that across protocols, the technical noise exhibited by UMI-filtered scRNA-Seq data closely follows Poisson statistics. Smoothing is performed by first identifying the nearest neighbors of each cell in a step-wise fashion, based on partially smoothed and variance-stabilized expression profiles, and then aggregating their transcript counts. We show that kNN-smoothing greatly improves the detection of clusters of cells and co-expressed genes, and clearly outperforms other smoothing methods on simulated data. To accurately perform smoothing for datasets containing highly similar cell populations, we propose the kNN-smoothing 2 algorithm, in which neighbors are determined after projecting the partially smoothed data onto the first few principal components. We show that unlike its predecessor, kNN-smoothing 2 can accurately distinguish between cells from different T cell subsets, and enables their identification in peripheral blood using unsupervised methods. Our work facilitates the analysis of scRNA-Seq data across a broad range of applications, including the identification of cell populations in heterogeneous tissues and the characterization of dynamic processes such as cellular differentiation. Reference implementations of our algorithms can be found at https://github.com/yanailab/knn-smoothing.
Publisher
Cold Spring Harbor Laboratory
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献