89Zr-oxine labelling and PET imaging shows lung delivery of a cell/gene cancer therapy

Author:

Patrick P. StephenORCID,Kolluri Krishna K.,Thin May Z.,Edwards Adam,Sage Elizabeth K.,Sanderson Tom,Weil Benjamin D.,Dickson John C.,Lythgoe Mark F.,Lowdell Mark,Janes Sam M.,Kalber Tammy L.

Abstract

AbstractPurposeMSCTRAIL is a new stem cell-based therapy for lung cancer, currently in phase I evaluation (ClinicalTrials.gov ref: NCT03298763). Biodistribution of cell therapies is rarely assessed in clinical trials, despite cell delivery to the target site often being critical to presumed mechanism of action. This preclinical study demonstrates that MSCTRAIL biodistribution dynamics can be detected non-invasively using 89Zr-oxine labelling and PET imaging, thus supporting use of this cell tracking technology in phase II evaluation.MethodsMSCTRAIL were radiolabelled with a range of 89Zr-oxine doses, and assayed for cell viability, phenotype and therapeutic efficacy post-labelling. Cell biodistribution was imaged in a mouse model of lung cancer using PET imaging and bioluminescence imaging (BLI) to confirm cell viability and location in vivo up to 1 week post-injection.ResultsMSCTRAIL retained therapeutic efficacy and MSC phenotype at doses up to and above those required for clinical imaging. The effect of 89Zr-oxine labelling on cell proliferation rate was dose and time-dependent. PET imaging showed delivery of MSCTRAIL to the lungs in a mouse model of lung cancer, with PET signal correlating with the presence of viable cells as assessed by bioluminescence imaging, ex vivo autoradiography and matched fluorescence imaging on lung tissue sections. Human dosimetry estimates were produced using simulations and preclinical biodistribution data.Conclusion89Zr-oxine labelling and PET imaging present an attractive method of evaluating the biodistribution of new cell-therapies, such as MSCTRAIL. This offers to improve understanding of mechanism of action, migration dynamics and interpatient variability of MSCTRAIL and other cell-based therapies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3