p75NTR and DR6 regulate distinct phases of axon degeneration demarcated by spheroid rupture

Author:

Yong Yu,Gamage Kanchana,Cheng Irene,Barford Kelly,Spano Anthony,Winckler Bettina,Deppmann Christopher

Abstract

AbstractThe regressive events associated with trophic deprivation are critical for sculpting a functional nervous system. After nerve growth factor withdrawal, sympathetic axons maintain their structural integrity for roughly 18 hours (latent phase) followed by a rapid and near unison disassembly of axons over the next 3 hours (catastrophic phase). Here we examine the molecular basis by which axons transition from latent to catastrophic phases of degeneration following trophic withdrawal. Prior to catastrophic degeneration, we observed an increase in intra-axonal calcium. This calcium flux is accompanied by p75 neurotrophic factor receptor (NTR)-Rho-actin dependent expansion of calcium rich axonal spheroids that eventually rupture, releasing their contents to the extracellular space. Conditioned media derived from degenerating axons is capable of hastening transition into the catastrophic phase of degeneration. We also found that death receptor 6 (DR6) but not p75NTR is required for transition into the catastrophic phase in response to conditioned media but not for the intra-axonal calcium flux, spheroid formation, or rupture that occurs toward the end of latency. Our results support the existence of an inter-axonal degenerative signal that promotes catastrophic degeneration among trophically deprived axons.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3