Abstract
ABSTRACTExtracellular matrix (ECM) deposition after central nervous system (CNS) injury leads to inhibitory scarring in mammals, whereas it facilitates axon regeneration in the zebrafish. However, the molecular basis of these different fates is not understood. Here, we identify small leucine-rich proteoglycans (SLRPs) as a causal factor in regeneration failure. We demonstrate that the SLRPs Chondroadherin, Fibromodulin, Lumican, and Prolargin are enriched in human, but not zebrafish, CNS lesions. Targeting SLRPs to the zebrafish injury ECM inhibits axon regeneration and functional recovery. Mechanistically, we find that SLRPs confer structural and mechanical properties to the lesion environment that are adverse to axon growth. Our study reveals SLRPs as previously unknown inhibitory ECM factors in the human CNS that impair axon regeneration by modifying tissue mechanics and structure.ONE SENTENCE SUMMARYComposition, structural organization, and mechanical properties of the injury ECM direct central nervous system regeneration.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献