Anatomy Segmentation in Laparoscopic Surgery: Comparison of Machine Learning and Human Expertise

Author:

Kolbinger Fiona R.ORCID,Rinner Franziska M.,Jenke Alexander C.ORCID,Carstens Matthias,Krell Stefanie,Leger StefanORCID,Distler Marius,Weitz Jürgen,Speidel StefanieORCID,Bodenstedt SebastianORCID

Abstract

StructuredAbstractBackgroundLack of anatomy recognition represents a clinically relevant risk in abdominal surgery. Machine learning (ML) methods can help identify visible patterns and risk structures, however, their practical value remains largely unclear.Materials and MethodsBased on a novel dataset of 13195 laparoscopic images with pixel-wise segmentations of eleven anatomical structures, we developed specialized segmentation models for each structure and combined models for all anatomical structures using two state-of-the-art model architectures (DeepLabv3 and SegFormer), and compared segmentation performance of algorithms to a cohort of 28 physicians, medical students, and medical laypersons using the example of pancreas segmentation.ResultsMean Intersection-over-Union for semantic segmentation of intraabdominal structures ranged from 0.28 to 0.83 and from 0.23 to 0.77 for the DeepLabv3-based structure-specific and combined models, and from 0.31 to 0.85 and from 0.26 to 0.67 for the SegFormer-based structure-specific and combined models, respectively. Both the structure-specific and the combined DeepLabv3-based models are capable of near-real-time operation, while the SegFormer-based models are not. All four models outperformed at least 26 out of 28 human participants in pancreas segmentation.ConclusionsThese results demonstrate that ML methods have the potential to provide relevant assistance in anatomy recognition in minimally-invasive surgery in near-real-time. Future research should investigate the educational value and subsequent clinical impact of respective assistance systems.HighlightsMachine learning models to reduce surgical risks that precisely identify 11 anatomical structures: abdominal wall, colon, intestinal vessels (inferior mesenteric artery and inferior mesenteric vein with their subsidiary vessels), liver, pancreas, small intestine, spleen, stomach, ureter and vesicular glandsLarge training dataset of 13195 real-world laparoscopic images with high-quality anatomy annotationsSimilar performance of individual segmentation models for each structure and combined segmentation models in identifying intraabdominal structures, and similar segmentation performance of DeepLabv3-based and SegFormer-based modelsDeepLabv3-based models are capable of near-real-time operation while SegFormer-based models are not, but SegFormer-based models outperform DeepLabv3-based models in terms of accuracy and generalizabilityAll models outperformed at least 26 out of 28 human participants in pancreas segmentation, demonstrating their potential for real-time assistance in recognizing anatomical landmarks during minimally-invasive surgery.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3