Exploring of a novel monitoring tool for injury risk when sidestepping: Using unsupervised learning to characterize movement patterns

Author:

David SinaORCID,Barton Gabor J.ORCID

Abstract

AbstractThe monitoring of athletes is crucial to prevent injuries, identify fatigue or support return-to-play decisions. The purpose of this study was to explore the ability of Kohonen neural network self-organizing maps (SOM) to objectively visualize and characterize different movement patterns during sidestepping and to detect those patterns that are associated with signs of injury risk or fatigue. The marker trajectories of 631 pre-planned sidestepping trials were used to train a SOM. Out of 61913 input vectors, the SOM identified 1250 unique body postures, determined by the 3D marker positions. Visualizing the movement trajectories and adding the latent parameter time, allows for the investigation of different movement patterns. Additionally, the SOM can be used to identify zones with increased injury risk, by adding more latent parameters more directly linked to injuries which opens the option to monitor athletes and give feedback. The results highlight the ability of unsupervised learning to visualize movement patterns and to give further insight into an individual athlete’s status without the necessity to reduce the complexity of the data describing the movement.

Publisher

Cold Spring Harbor Laboratory

Reference24 articles.

1. Biddle S , Fox KR , Boutcher SH. Physical Activity and Psychological Well-Being. Vol 552. Routledge London; 2000.

2. Hagger M , Chatzisarantis N. The Social Psychology of Exercise and Sport. McGraw-Hill Education (UK); 2005.

3. Gottlob CA , Baker CL , Pellissier JM , Colvin L. Cost effectiveness of anterior cruciate ligament reconstruction in young adults. Clin Orthop Relat Res. 1999;(367):272–282.

4. Arthroscopic ACL reconstruction: a 5–9 year follow-up

5. Why screening tests to predict injury do not work—and probably never will…: a critical review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3