Multi-trait ensemble genomic prediction and simulations of recurrent selection highlight importance of complex trait genetic architecture in long-term genetic gains in wheat

Author:

Fradgley NickORCID,Gardner Keith A.ORCID,Bentley Alison R.ORCID,Howell PhilORCID,Mackay Ian J.ORCID,Scott Michael F.ORCID,Mott RichardORCID,Cockram JamesORCID

Abstract

AbstractCereal crop breeders have achieved considerable genetic gain in genetically complex traits, such as grain yield, while maintaining genetic diversity. However, focus on selection for yield has negatively impacted other important traits. To better understand selection within a breeding context, and how it might be optimised, we analysed genotypic and phenotypic data from a diverse, 16-founder wheat multi-parent advanced generation inter-cross (MAGIC) population.Compared to single-trait models, multi-trait ensemble genomic prediction models increased prediction accuracy for almost 90% of traits, improving grain yield prediction accuracy by 3-52%. For complex traits, non-parametric models (Random Forest) also outperformed simplified, additive models (LASSO), increasing grain yield prediction accuracy by 10-36%. Simulations of recurrent genomic selection then showed that sustained greater forward prediction accuracy optimised long-term genetic gains.Simulations of selection on grain yield found indirect responses in related traits, which involved optimisation of antagonistic trait relationships. We found multi-trait selection indices could be used to optimise undesirable relationships, such as the trade-off between grain yield and protein content, or combine traits of interest, such as yield and weed competitive ability.Simulations of phenotypic selection found that including Random Forest rather than LASSO genetic models, and multi-trait rather than single-trait models as the true genetic model, accelerated and extended long-term genetic gain whilst maintaining genetic diversity. These results suggest important roles of pleiotropy and epistasis in the wider context of wheat breeding programmes and provide insights into mechanisms for continued genetic gain in a limited genepool and optimisation of multiple traits for crop improvement.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3