Accelerated absorption of regular insulin administered via a vascularizing permeable microchamber implanted subcutaneously in diabeticRattus norvegicus

Author:

Steyn Leah V.,Drew Delaney,Vlachos Demetri,Huey Barry,Cocchi Katie,Price Nicholas D.,Johnson Robert,Putnam Charles W.ORCID,Papas Klearchos K.

Abstract

AbstractIn Type 1 diabetes patients, even ultra-rapid acting insulins injected subcutaneously reach peak concentrations in 45 minutes or longer. The lag time between dosing and peak concentration, as well as intra- and inter-subject variability, render prandial glucose control and dose consistency difficult. We postulated that insulin absorption from subcutaneously implantable vascularizing microchambers would be significantly faster than conventional subcutaneous injection. Male athymic nudeR. norvegicusrendered diabetic with streptozotocin were implanted with vascularizing microchambers (single chamber; 1.5 cm2 surface area per side; nominal volume, 22.5 µL). Plasma insulin was assayed after a single dose (1.5 U/kg) of diluted insulin human (Humulin®R U-100), injected subcutaneously or via microchamber. Microchambers were also implanted in additional animals and retrieved at intervals for histologic assessment of vascularity. Following conventional subcutaneous injection, the mean peak insulin concentration was 22.7 (SD 14.2) minutes. By contrast, when identical doses of insulin were injected via subcutaneous microchamber 28 days after implantation, the mean peak insulin time was shortened to 7.50 (SD 4.52) minutes. Peak insulin concentrations were similar by either route; however, inter-subject variability was reduced when insulin was administered via microchamber. Histologic examination of tissue surrounding microchambers showed mature vascularization on days 21 and 40 post-implantation. Implantable vascularizing microchambers of similar design may prove clinically useful for insulin dosing, either intermittently by needle, or continuously by pump including in “closed loop” systems, such as the artificial pancreas.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3