Direct conversion of human fibroblasts to pancreatic epithelial cells through transient progenitor states is controlled by temporal activation of defined factors

Author:

Fei Liangru,Zhang Kaiyang,Poddar Nikita,Hautaniemi SampsaORCID,Sahu BiswajyotiORCID

Abstract

AbstractCell fate can be reprogrammed by ectopic expression of lineage-specific transcription factors (TF). For example, few specialized cell types like neurons, hepatocytes and cardiomyocytes have been generated from fibroblasts by defined factors (Wanget al, 2021). However, the exact cell state transitions and their control mechanisms during cell fate conversion are still poorly understood. Moreover, the defined TFs for generating vast majority of the human cell types are still elusive. Here, we report a novel protocol for reprogramming human fibroblasts to pancreatic exocrine cells with phenotypic and functional characteristics of ductal epithelial cells using a minimal set of six TFs. We mapped the molecular determinants of lineage dynamics at single-cell resolution using a novel factor-indexing method based on single-nuclei multiome sequencing (FI-snMultiome-seq) that enables dissecting the role of each individual TF and pool of TFs in cell fate conversion. We show that transdifferentiation – although being considered a direct cell fate conversion method – occurs through transient progenitor states orchestrated by stepwise activation of distinct TFs. Specifically, transition from mesenchymal fibroblast identity to epithelial pancreatic exocrine fate involves two deterministic steps: first, an endodermal progenitor state defined by activation of HHEX concurrently with FOXA2 and SOX17, and second, temporal GATA4 activation essential for maintenance of pancreatic cell fate program. Collectively, our data provide a high-resolution temporal map of the epigenome and transcriptome remodeling events that facilitate cell fate conversion, suggesting that direct transdifferentiation process occurs through transient dedifferentiation to progenitor cell states controlled by defined TFs.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3