Author:
Fisher Delaney G.,Sharifi Khadijeh A.,Ulutas E. Zeynep,Kumar Jeyan S.,Kalani M. Yashar S.,Miller G. Wilson,Price Richard J.,Tvrdik Petr
Abstract
AbstractCerebral cavernous malformations (CCM), also known as cavernous angiomas, are blood vessel abnormalities comprised of clusters of grossly enlarged and hemorrhage-prone capillaries. The prevalence in the general population, including asymptomatic cases, is estimated to be 0.5%. Some patients develop severe symptoms, including seizures and focal neurologic deficits, while others have no symptoms. The causes of this remarkable presentation heterogeneity within a primarily monogenic disease remain poorly understood. To address this problem, we have established a chronic mouse model of CCM, induced by postnatal ablation ofKrit1withPdgfb-CreERT. These mice develop CCM lesions gradually over 4-6 months of age throughout of the brain. We examined lesion progression in these mice with T2-weighted 7T MRI protocols. Precise volumetric analysis of individual lesions revealed non-monotonous behavior, with some lesions temporarily growing smaller. However, the cumulative lesional volume invariably increased over time and accelerated after about 3 months. Next, we established a modified protocol for dynamic contrast enhanced (DCE) MR imaging and produced quantitative maps of gadolinium tracer MultiHance in the lesions, indicating a high degree of heterogeneity in lesional permeability. Multivariate comparisons of MRI properties of the lesions with cellular markers for endothelial cells, astrocytes, and microglia revealed that increased cell density surrounding lesions correlates with stability, while increased vasculature within and surrounding lesions may correlate with instability. Our results lay a foundation for better understanding individual lesion properties and provide a comprehensive pre-clinical platform for testing new drug and gene therapies for controlling CCM.
Publisher
Cold Spring Harbor Laboratory