Characterizing responsiveness to the COVID-19 pandemic in the United States and Canada using mobility data

Author:

Soucy Jean-Paul R.ORCID,Fisman David N.ORCID,MacFadden Derek R.,Brown Kevin A.ORCID

Abstract

AbstractBackgroundMobile phone-derived human mobility data are a proxy for disease transmission risk and have proven useful during the COVID-19 pandemic for forecasting cases and evaluating interventions. We propose a novel metric using mobility data to characterize responsiveness to rising case rates.MethodsWe examined weekly reported COVID-19 incidence and retail and recreation mobility from Google Community Mobility Reports for 50 U.S. states and nine Canadian provinces from December 2020 to November 2021. For each jurisdiction, we calculated the responsiveness of mobility to COVID-19 incidence when cases were rising. Responsiveness across countries was summarized using subgroup meta-analysis. We also calculated the correlation between the responsiveness metric and the reported COVID-19 death rate during the study period.FindingsResponsiveness in Canadian provinces (β= -1·45; 95% CI: -2·45, -0·44) was approximately five times greater than in U.S. states (β= -0·30; 95% CI: -0·38, -0·21). Greater responsiveness was moderately correlated with a lower reported COVID-19 death rate during the study period (Spearman’sρ= 0·51), whereas average mobility was only weakly correlated the COVID-19 death rate (Spearman’sρ= 0·20).InterpretationOur study used a novel mobility-derived metric to reveal a near-universal phenomenon of reductions in mobility subsequent to rising COVID-19 incidence across 59 states and provinces of the U.S. and Canada, while also highlighting the different public health approaches taken by the two countries.FundingThis study received no funding.Research in contextEvidence before the studyThere exists a wide body of literature establishing the usefulness of mobile phone-derived human mobility data for forecasting cases and other metrics during the COVID-19 pandemic. We performed a literature search to identify studies examining the opposite relationship, attempting to quantify the responsiveness of human mobility to changes in COVID-19 incidence. We searched PubMed on October 21, 2022 using the keywords “COVID-19”, “2019-nCoV”, or “SARS-CoV-2” in combination with “responsiveness” and one or more of “mobility”, “distancing”, “lockdown”, and “non-pharmaceutical interventions”. We scanned 46 published studies and found one that used a mobile phone data-derived index to measure the intensity of social distancing in U.S. counties from January 2020 to January 2021. The authors of this study found that an increase in cases in the last 7 days was associated with an increase in the intensity of social distancing, and that this effect was larger during periods of lockdown/shop closures.Added value of the studyOur study developed a metric of the responsiveness of mobility to rising case rates for COVID-19 and calculated it for 59 subnational jurisdictions in the United States and Canada. While nearly all jurisdictions displayed some degree of responsiveness, average responsiveness in Canada was nearly five times greater than in the United States. Responsiveness was moderately associated with the reported COVID-19 death rate during the study period, such that jurisdictions with greater responsiveness had lower death rates, and was more strongly associated with death rates than average mobility in a jurisdiction.Implications of all the available evidenceMobile phone-derived human mobility data has proven useful in the context of infectious disease surveillance during the COVID-19 pandemic, such as for forecasting cases and evaluating non-pharmaceutical interventions. In our study, we derived a metric of responsiveness to show that mobility data may be used to track the efficiency of public health responses as the pandemic evolves. This responsiveness metric was also correlated with reported COVID-19 death rates during the study period. Together, these results demonstrate the usefulness of mobility data for making broad characterizations of public health responses across jurisdictions during the COVID-19 pandemic and reinforce the value of mobility data as an infectious disease surveillance tool for answering present and future threats.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3