Abstract
AbstractRespiratory complex I powers ATP synthesis by oxidative phosphorylation, exploiting the energy from NADH oxidation by ubiquinone to drive protons across an energy-transducing membrane.Drosophila melanogasteris a candidate model organism for complex I due to its high evolutionary conservation with the mammalian enzyme, well-developed genetic toolkit, and complex physiology for studies in specific cell types and tissues. Here, we isolate complex I fromDrosophilaand determine its structure, revealing a 43-subunit assembly with high structural homology to its 45-subunit mammalian counterpart, including a hitherto unknown homologue to subunit NDUFA3. The major conformational state of theDrosophilaenzyme is the mammalian-type ‘ready-to-go’ active resting state, with a fully ordered and enclosed ubiquinone-binding site, but a subtly altered global conformation related to changes in subunit ND6. The mammalian-type ‘deactive’ pronounced resting state is not observed: in two minor states the ubiquinone-binding site is unchanged, but a deactive-typeπ-bulge is present in ND6-TMH3. Our detailed structural knowledge ofDrosophilacomplex I provides a foundation for new approaches to disentangle mechanisms of complex I catalysis and regulation in bioenergetics and physiology.
Publisher
Cold Spring Harbor Laboratory