A-SOiD, an active learning platform for expert-guided, data efficient discovery of behavior

Author:

Schweihoff Jens F.ORCID,Hsu Alexander I.ORCID,Schwarz Martin K.ORCID,Yttri Eric A.ORCID

Abstract

AbstractBehavior identification and quantification techniques have undergone rapid development. To this end, supervised or unsupervised methods are chosen based upon their intrinsic strengths and weaknesses (e.g. user bias, training cost, complexity, action discovery). Here, a new active learning platform, A-SOiD, blends these strengths and in doing so, overcomes several of their inherent drawbacks. A-SOiD iteratively learns user-defined groups with a fraction of the usual training data while attaining expansive classification through directed unsupervised classification. In socially-interacting mice, A-SOiD outperformed standard methods despite requiring 85% less training data. Additionally, it isolated two additional ethologically-distinct mouse interactions via unsupervised classification. Similar performance and efficiency was observed using non-human primate 3D pose data. In both cases, the transparency in A-SOiD’s cluster definitions revealed the defining features of the supervised classification through a game-theoretic approach. To facilitate use, A-SOiD comes as an intuitive, open-source interface for efficient segmentation of user-defined behaviors and discovered subactions.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3