Plant protoplast-based assay to screen for salicylic acid response-modulating bacteria

Author:

Miebach MoritzORCID,Jiang Renji,Jameson Paula E.ORCID,Remus-Emsermann Mitja N.P.ORCID

Abstract

ABSTRACTLeaves host remarkably diverse microbes, collectively referred to as the leaf microbiota. While many beneficial functions have been attributed to the plant microbiota, the individual contributions of leaf-colonising bacteria range from pathogenic to mutualistic interactions. Omics approaches demonstrated that some leaf-colonising bacteria evoke substantial changes in gene expression and metabolic profiles in the plant host, including plant immunity. While omic approaches provide a system level view on cellular functions, they are costly and laborious, thereby severely limiting the throughput of the number of bacterial strains that can be testedin planta. To enable cost-effective high-throughput screens, we have developed a plant protoplast-based assay to measure real-time target gene expression changes following bacterial inoculation. Here, protoplasts were isolated from leaves of stable transgenic plants containing a pPR1:eYFP-nls construct. Changes in yellow fluorescence were captured for up to 96 treatments using a plate reader. This allowed the monitoring of changes in the salicylic acid-dependent plant immune response over time. Protoplast isolation per se evoked mild fluorescence responses, likely linked to endogenous salicylic acid production. This is advantageous in a bacterial assay, as bidirectional changes in PR1 expression can be measured. Plate reader-generated data were validated via fluorescence microscopy and RT-qPCR. Fluorescence microscopy further demonstrated heterogeneity in the response of individual protoplasts, which is potentially linked to differences in cell-type. In summary, the protoplast assay is an affordable and easily up-scalable way of measuring changes in target gene expression to bacterial colonisation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3