Context-Aware Transcript Quantification from Long Read RNA-Seq data with Bambu

Author:

Chen YingORCID,Sim AndreORCID,Wan Yuk Kei,Yeo Keith,Lee Joseph Jing Xian,Ling Min Hao,Love Michael I.,Göke JonathanORCID

Abstract

AbstractMost approaches to transcript quantification rely on fixed reference annotations. However, the transcriptome is dynamic, and depending on the context, such static annotations contain inactive isoforms for some genes while they are incomplete for others.To address this, we have developed Bambu, a method that performs machine-learning based transcript discovery to enable quantification specific to the context of interest using long-read RNA-Seq data. To identify novel transcripts, Bambu employs a precision-focused threshold referred to as the novel discovery rate (NDR), which replaces arbitrary per-sample thresholds with a single interpretable parameter. Bambu retains the full-length and unique read counts, enabling accurate quantification in presence of inactive isoforms.Compared to existing methods for transcript discovery, Bambu achieves greater precision without sacrificing sensitivity. We show that context-aware annotations improve abundance estimates for both novel and known transcripts. We apply Bambu to human embryonic stem cells to quantify isoforms from repetitive HERVH-LTR7 retrotransposons, demonstrating the ability to estimate transcript expression specific to the context of interest.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3